Спонтанное излучение обусловлено взаимодействием с нулевыми колебаниями квантовых полей в физическом вакууме. В квантовой механике показывается, что энергия гармонического осциллятора отлична от нуля даже в основном, невозбужденном состоянии. Следствием этого утверждения является1 то, что вакуум заполнен малыми, так называемыми нулевыми колебаниями различных полей, в том числе и электромагнитного. Взаимодействие с этими полями приводит, в конце концов, к спонтанному переходу системы в основное или более нижележащее энергетическое состояние и одновременному излучению кванта поля или частицы. В многомодовом режиме монохроматичность лазера связана с числом генерирующих мод. Если лазер работает в одномодовом режиме и его выходное излучение не изменяется во времени, то предел монохроматичности можно уменьшить до значения порядка 1–10 Гц (например, для He-Ne- лазера, работающего в непрерывном режиме). Для лазеров, работающих в импульсном режиме, минимальная спектральная ширина ограничивается величиной, обратной длительности импульса τимп..
Калькулятор ширины микрополоска
Этот феномен объясняется взаимодействием системы с нулевыми колебаниями вакуумных полей (например, электромагнитного поля). При воздействии внешнего магнитного поля на квантовую систему происходит расщепление энергетического уровня Ем на несколько подуровней gm.
Доплеровское уширение
3.3 приведены резонансные кривые лазерного перехода (с центром ν0 и шириной линии ∆ν0) и резонансная частота лазерного резонатора (с центром νген. и шириной линии ∆νген.). 3.2 показан способ измерения спектральной ширины лазерного излучения по спектральному контуру (по распределению энергии внутри линии). Увеличению ширины спектральной линии по сравнению с естественной шириной. Наиболее широкими оказываются уровни с малым временем жизни и большой вероятностью перехода. Соотношение ширины линии и ширины перехода наглядно иллюстрируется рис.1.2.
При воздействии магнитного поля энергетические уровни атомов расщепляются на несколько подуровней с близкими значениями энергии. При эффекте Зеемана профили расщеплённых частей линии зачастую сливаются между собой, что вызывает наблюдаемое уширение линии, а не расщепление33334. Таким образом, длины волн спектральных линий характеризуют структуру энергетических уровней квантовой системы.
Существует множество факторов, которые приводят к увеличению ширины линии и из-за которых спектральные линии не являются монохроматическими ― они называются механизмами уширения125. Из рисунка 2 хорошо видно, что уменьшение длины резонатора приводит к увеличению расстояния между спектральными линиями в исследуемом диапазоне длин волн, так как, в соответствии с формулой (4) меняется не только длина резонатора d, но и номер p.
Инструментальный профиль
В частности, каждый химический элемент и ион имеет собственную структуру энергетических уровней, а значит, уникальный набор спектральных линий14. Линии в наблюдаемом спектре могут быть отождествлены с линиями известных химических элементов, следовательно, по спектральным линиям можно определять присутствие тех или иных химических элементов в исследуемом объекте9. Количественное определение химического состава источника спектра по линиям является предметом спектрального анализа10. При эффекте Зеемана профили расщеплённых частей линии зачастую сливаются между собой, что вызывает наблюдаемое уширение линии, а не расщепление52930. Энергетическому переходу между двумя бесконечно узкими энергетическими уровнями должна соответствовать бесконечно узкая спектральная линия поглощения или излучения на строго фиксированной частоте. Реально такая идеализированная монохроматическая волна существовать не может, поскольку уровни энергии имеют конечную ширину.
Спектральные линии с очень малой шириной реализуются при ядерных переходах в кристаллах при Мёссбауэра эффекте, узкие спектральные линии испускаются квантовыми генераторами – мазерами и лазерами. Любая возбужденная (то есть не находящаяся на самом нижнем энергетическом уровне) квантово-механическая система не может находиться сколь угодно долго в этом состоянии. Спустя некоторое случайное время, в среднем равное времени жизни состояния даже при отсутствии взаимодействия с другими системами, происходит спонтанное излучение (например — фотона, однако возможно и излучение других частиц с ненулевой массой покоя, например, электрона).
Впредыдущем рассмотрении не учитывалась ширина спектральной линии. Но любая спектральная линия имеет конечную ширину, связанную с вероятностями переходов. Поэтому вопрос о форме и ширине спектральной линии целесообразно рассмотреть подробнее. Механизмы уширения линий, которые обусловлены влиянием посторонних частиц, называются эффектами давления, так как при увеличении давления увеличивается и влияние этих частиц. Например, к эффектам давления относятся столкновения возбуждённых атомов с другими частицами, в результате которых атомы теряют свою энергию возбуждения. В результате среднее время жизни атома в возбуждённом состоянии уменьшается, и, в соответствии с принципом неопределённости, увеличивается размытость уровня по сравнению с естественной (см. выше➤)526. Ударное уширение приводит к формированию лоренцевского профиля2.
Эмиссионные линии можно наблюдать, например, в спектре нагретого разреженного газа. Если же пропустить излучение источника с непрерывным спектром через тот же самый газ в охлаждённом состоянии, то на фоне непрерывного спектра будут наблюдаться линии поглощения на тех же длинах волн37. Кроме механизмов уширения (см. выше➤), на профиль линии влияет аппаратная функция приборов и их спектральное разрешение. Деконволюцию можно использовать для улучшения спектрального разрешения.
Эффект Штарка, возникающий в постоянном электрическом поле, также приводит к расщеплению энергетических уровней, и, как следствие — к расщеплению спектральных линий, как и эффект Зеемана35. Существует множество факторов, которые приводят к увеличению ширины линии и из-за которых спектральные линии не являются монохроматическими ― они называются механизмами уширения1314. Эффект Штарка, возникающий в постоянном электрическом поле, также приводит к расщеплению энергетических уровней, и, как следствие — к расщеплению спектральных линий, как и эффект Зеемана31.
Такимобразом, у молекулы не может быть чистоэлектронных переходов, а возможны толькоэлектронно-колебательно-вращательные(ЭКВ) переходы. Очевидно, что числоЭКВ-псреходов у молекулы заведомобольше, чем электронных переходом уатомов. Поэтому спектры молекул какправило сложнее и состоят из большегочисла спектральных линий, которыеблагодаря близости своих характеристикчаще всего сливаются в спектральныеполосы различной ширины. Эти так называемые оптические столкновения часты и нарушают когерентность монохроматической волны.
2.1.Форма и ширина спектральной линии
Естественная ширина спектральной линии зависит от ширин распада как начального, так и конечного состояния системы, между которыми происходит переход. В случае распада до стабильного состояния (то есть, уровня с нулевой шириной распада) естественная ширина линии совпадает с шириной распада начального состояния. В случае, когда ширины обоих уровней конечны, квадрат естественной ширины линии равен сумме квадратов ширин начального и конечного состояний. Профиль (контур) спектральной линии — распределение интенсивности излучения или поглощения в линии в зависимости от длины волны или частоты. Профиль часто характеризуется шириной на полувысоте и эквивалентной шириной, а его вид и ширина зависит от множества факторов, называемых механизмами уширения. Поскольку чаще всего механизмы уширения, отдельно взятые, создают либо гауссовский, либо лоренцевский профиль, то наблюдаемые профили линий представляют собой их свёртку — фойгтовский профиль, который достаточно хорошо описывает большинство спектральных линий.
Это расщепление, сопровождающееся уширением спектральной линии, называется эффектом Зеемана, а число gm различных состояний – кратностью (степенью) вырождения уровня. В 1885 году Иоганн Бальмер эмпирически вывел формулу для длин волн некоторых спектральных линий водорода. В 1888 году Йоханнес Ридберг обобщил эту формулу для переходов между любыми двумя уровнями в атоме водорода — формулу Ридберга. В 1896 году Питер Зееман обнаружил расщепление спектральных линий в магнитном поле — эффект, позже названный в его честь4546. Задолго до открытия спектральных линий, в 1666 году Исаак Ньютон впервые наблюдал спектр Солнца, а в 1802 году Уильям Волластон создал щелевой спектроскоп. В 1814 году Йозеф Фраунгофер обнаружил в спектре Солнца спектральные линии поглощения, которые впоследствии стали называться фраунгоферовыми4344.
Важность и области применения
Еслина молекулу анализируемого веществавоздействует излучение УФ и видимогодиапазона, то в молекуле могут происходитьЭКВ-переходы типа «а», https://bet.ua/ «б» (рис. 1). Приэтом ЭКВ—переходы типа «а» соответствуютпоглощению УФ и видимого диапазона. Ониизучаются электронной спектроскопиейпоглощения УФ- и видимого диапазона,лежащей и основе фото- и спектрофотомегрическогоанализа. ЭКВ-переходы типа «б» соответствуютиспусканию излучения этого же диапазонаи лежат в основе явления люминесценциии основанного на нем флуоресцентногоанализа. Символ иона, Ne – концентрация электронов, множитель а0,2-0,5 для нейтральных атомов, для однократных ионов а1.
Для изолированной квантовой системы характерна естественная (радиационная) Ш. Dve, определяемая суммой ширин уровней энергии, между к-рыми происходит соответствующий данной спектральной линии спонтанный квантовый переход.
В случае ЯМР спектров процесс относительно прост, потому что контуры линий — лоренцианы, и свёртка лоренциана с другим лоренцианом также является лоренцианом. Во временной области (после преобразования Фурье) свёртка становится умножением.
Положение линии в электромагнитном спектре обычно задаётся длиной волны, частотой или энергией фотона, отвечающей максимуму интенсивности. Кроме электромагнитного спектра, спектральные линии могут возникать в спектрах энергии частиц (например, в альфа-спектре при альфа-распаде радиоактивных ядер), в спектрах звуковых колебаний и вообще любых волновых процессов. Ниже, если нет специальных оговорок, имеются в виду электромагнитные спектры. Параметры спектральных линий и их профили содержат большое количество информации об условиях в среде, где они возникли, поскольку разные механизмы уширения приводят к образованию различных профилей1338.
Микрополосковые линии являются разновидностью электрических линий передачи, используемых для передачи сигналов СВЧ-частоты. Эта концепция была введена в 1950-х годах как более простая альтернатива традиционным волноводам и коаксиальным кабелям, предлагая простоту интеграции с компонентами контуров на ПП. В простейшем случае оптический лазерный резонатор представляет собой два плоских зеркала, расположенных параллельно друг другу, между которыми находится усиливающая среда. Излучаемая в усиливающей среде волна отражается от зеркал и вновь возвращается в активную среду, вызывая индуцированное излучение. Одно из зеркал делается полупрозрачным для выхода части излучения 2.
Следовательно, свёртка суммы двух лоренцианов становится умножением двух экспонент во временной области. Поскольку Фурье спектроскопия ЯМР выполняется во временной области, деление данных на экспоненту эквивалентно деконволюции в частотной области. Подходящий выбор экспоненты приводит к уменьшению ширины линии в частотной области. Этот метод практически устарел благодаря достижениям в технологии ЯМР44. Аналогичный процесс применялся для повышения разрешения других типов спектров с тем недостатком, что для спектра нужно выполнить преобразование Фурье, а затем обратное преобразование после применения функции деконволюции во временной области33. Поскольку количество фотонов, поглощаемых или излучаемых в линии, зависит только от количества атомов в соответствующем состоянии и плотности излучения, то, при прочих равных, чем больше ширина на полувысоте, тем меньше её глубина или интенсивность11.
Доплеровскоеуширение в газовых активных средахдостигает 1000 МГц, тогда как в твердыхтелах оно незначительно из-за жесткойсвязи ионов активатора с решеткой. Придоплеровском уширении форма линиименяется и уже не соответствуетформе естественной линии; поэтому такоеуширение называют неоднородным. Расчет ширины микрополоска имеет решающее значение при проектировании СВЧ-контуров и антенн. Он гарантирует, что линия передачи имеет правильный импеданс, минимизируя отражение и потери, что жизненно важно для эффективной передачи мощности сигнала. Калькулятор ширины микрополоска представляет собой незаменимый инструмент для инженеров и разработчиков, работающих в области СВЧ-технологий и проектирования печатных плат (ПП). Этот инструмент помогает в определении ширины микрополосковой линии передачи для достижения желаемого характерного импеданса, учитывая при этом относительную диэлектрическую проницаемость подложки, ее высоту и толщину дорожки. Квантовые системы описываются своими волновыми функциями, модули комплексных амплитуд которых достаточно быстро убывают с увеличением расстояния до системы, однако, с формальной точки зрения, нигде не обращаются в ноль.
Дальнейшему изучению спектральных линий способствовало изобретение более совершенных оптических приборов. Кроме того, в 1958 году был изобретён лазер, который создаёт излучение в очень узких линиях, что позволяет эффективно использовать приборы с высоким спектральным разрешением4548. В некоторых случаях, например, при высоком давлении, могут возникать сложные, асимметричные профили спектральных линий2.
Однако в некоторых условиях, например, при высоком давлении, могут возникать профили линий сложной асимметричной формы. Спектра́льная ли́ния — узкий участок энергетического спектра (например, спектра электромагнитного излучения), где интенсивность излучения намного больше либо намного меньше, чем в соседних областях спектра. В первом случае линия называется эмиссионной, во втором — линией поглощения.
Есте́ственная ширина́ спектра́льной ли́нии — ширина спектральной линии излучения изолированной квантовомеханической системы. Таким образом, спектральная ширина лазерного излучения определяется интервалом частот ∆ν (∆λ) около центра линии, на краях которого интенсивность падает в два раза по сравнению с центром линии. Например, измерения эквивалентной ширины альфа-перехода Бальмера в звёздах типа T Тельца используются для классификации отдельных звёзд типа T Тельца как классических, так и со слабыми линямиa2. Кроме того, эквивалентная ширина используется при изучении звездообразования в альфа-Лайман галактиках поскольку эквивалентная ширина линии альфа-Лайман связана со скоростью звездообразования в галактике5. Эквивалентная ширина также используется во многих других ситуациях, когда необходимо количественное сравнение между силами линий. Последнее особенно заметнопроявляется в активированных стеклах,где окружение каждого из активных ионовразлично. Энергетические уровни состояний такой системы квантованы (дискретны), однако, из принципа неопределенности следует, что спектральные линии даже изолированной системы имеют конечную, но малую ширину, то есть, квазидискретны.
Вероятная скорость частиц в газе, M – масса атома (или молекулы), w0 – круговая частота спектральной линии. О., доплеровская ширина зависит от темп-ры и часто используется для её определения. Поскольку количество фотонов, поглощаемых или излучаемых в линии, зависит только от количества атомов в соответствующем состоянии и плотности излучения (см. выше➤), то, при прочих равных, чем больше ширина линии, тем меньше её глубина или интенсивность21.
Рассмотрен наглядный метод, позволяющий дать аналитическую оценку ширины линии лазерного излучения. Рассчитан спектр излучения лазерного резонатора Фабри-Перо для полупроводникового лазера на основе двойной гетероструктуры InAsSb/InAsSbP. Эквивалентная ширина используется в качестве количественной меры силы спектральных характеристик. Эквивалентная ширина является удобным выбором, поскольку формы спектральных характеристик могут варьироваться в зависимости от конфигурации системы, которая создаёт линии. Например, линия может испытывать доплеровское уширение из-за движений газа, испускающего фотоны.